Journal of Organometallic Chemistry, 434 (1992) C19-C25 Elsevier Sequoia S.A., Lausanne JOM 22822

Preliminary communication

Nucleophilic attack by isocyanides, phosphines and cyclohexenesulphide on the α -carbon of "side-on" bonded μ - σ : η^2 -(4e)-vinylidenes; formation of thioketene and thioaldehyde dimolybdenum complexes

Michael Bamber^a, Simon F.T. Froom^a, Michael Green^a, Michael Schulz^b and Helmut Werner^b

^a Department of Chemistry, King's College London, Strand, London WC2R 2LS (UK)

^b Institut für Anorganische Chemie der Universität, Am Hubland, W-8700 Würzburg (Germany)

(Received December 9, 1991)

Abstract

Reaction of $[Mo_2\{\mu - \sigma : \eta^2 - (4e) - C = CR_1R_2\}(CO)_4(\eta - C_5H_5)_2]$ $(R_1 = R_2 = H \text{ or } Me)$ with 'BuNC, PMe₃ or P(OMe)₃ leads, surprisingly, to attack on the C_a or carbenoid carbon of the vinylidene moiety. A similar reaction with cyclohexenesulphide results in transfer of a sulphur atom to C_a and formation of a dinuclear thicketene complex, which *via* successive protonation and addition of H⁻ gives a μ -thicacetaldehyde complex.

Vinylidene is an important ligand in transition metal chemistry [1], interest in it being stimulated by the suggestion that such species are present on the surface of Fischer-Tropsch catalysts. Recently [2] we have developed a rational and convenient synthesis of an unusual group of dinuclear complexes carrying the first examples of "side-on" bonded vinylidenes, that is systems with μ - σ : η^2 -(4e)-C=CR₁R₂ ligands. The reactivity of these species is clearly of interest, and in initial studies [3] we have established that protonation occurs selectively on the α or carbenoid carbon. It was obviously important to also examine the site of nucleophilic attack, and we report here that isocyanides, phosphines, phosphites and the sulphur-atom donor cyclohexenesulphide all attack the α -carbon of μ - σ : η^2 -(4e)-vinylidenes.

In the expectation of substituting a terminal carbonyl ligand we treated the complex $[Mo_2\{\mu-\sigma: \eta^2-(4e)-C = CH_2\}(CO)_4(\eta-C_5H_5)_2][1]$ (Scheme 1) with 'BuNC. In toluene as solvent at room temperature there was a rapid change in colour from purple to red, and (73% yield) a red crystalline 1:1 adduct III, was formed, the

Correspondence to: Professor M. Green, School of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY UK.

Scheme 1. (1)+¹BuNC/toluene/room temperature; (11)+PMe₃ or P(OMe)₃/toluene/room temperature; (11) UV/THF/room temperature; (1v) cyclohexenesulphide/toluene/room temperature; (v) HBF₄Et₂O/CH₂Cl₂/ -78° C; (v1) Li[BHEt₃]/THF, -78° C.

adduct was soluble in polar solvents and insoluble in non-polar solvents. A similar reaction occurred between II and 'BuNC to give IV. Inspection of the spectroscopic data [4*] for III and IV suggested, however, that the expected substitution

^{*} Reference number with asterisk indicates a note in the list of references.

Fig. 1. Molecular structure of IV. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): Mo(1)-Mo(2) 3.0661(5), Mo(1)-C(11) 2.189(3), Mo(2)-C(11) 2.193(3), Mo(2)-C(12) 2.356(4), C(11)-C(12) 1.455(5), C(11)-C(15) 1.399(5), N-C(15) 1.153(4); N-C(15)-C(11) 176.3(4), N-C(16)-C(17) 107.4(3), C(14)-C(12)-C(13) 111.2(3).

reaction had not occurred. The low field ¹³C resonance due to the C_{α} or carbenoid carbon of a μ - σ : η^2 -(4e)-vinylidene was absent, and in addition the spectra of both adducts exhibited *four* carbon resonances assignable to the contact carbons of terminally bonded CO ligands. In order to establish the nature of this reaction a single crystal X-ray diffraction study [5*] of IV was undertaken, and this revealed the structure shown in Fig. 1.

The 'BuNC has attacked the α -carbon of the vinylidene moiety to form a dinuclear complex, in which each molybdenum atom is coordinated to a η^5 -C₅H₅ and two terminal carbonyl ligands, the cyclopentadienyl ligands being orientated mutually *trans*, as in the parent complex II. The Mo-Mo single bond [3.0661(4) Å] is bridged by a μ -vinyl group [Mo(1)-C(11) 2.189(3); Mo(2)-C(11) 2.193(3), Mo(2)-C(12) 2.356(4) Å] formed from the C = CMe₂ fragment and 'BuNC, the three core atoms of the isocynanide adopting an almost linear [C(15)-N-C(16) 177.3(4)°] geometry in the adduct. The positive charge assumed to be present on the nitrogen atom is compensated for by a negative charge on Mo(1), the presence of which is indicated by the observation that the Mo-C bond lengths of the terminal carbonyl ligands coordinated to Mo(1) are shorter than the corresponding Mo(2)-C distances.

Similar nucleophilic addition reactions took place between the vinylidenes I and II, and trimethylphosphine or trimethylphosphite. Reaction occurred rapidly at room temperature (toluene) to give excellent yields (85%) of the zwitterionic 1:1 adducts V-VII [4*]. Again single crystal X-ray crystallography on V confirmed [5*] (see Fig. 2) that trimethylphosphine selectively attacks C_{α} of the vinylidene fragment to form a complex with very similar structural features to those exhibited by the isocycanide adduct IV.

These observations are particularly interesting in the context of previous studies of nucleophilic attack on co-ordinated vinylidenes, in which it was found that

Fig 2. Molecular structure of V. All hydrogen atoms have been omitted for clarity. Selected bond lengths (Å) and angles (deg): $Mo(1)-Mo(2) \ 3.0499(5)$, $Mo(1)-C(11) \ 2.168(4)$, $Mo(2)-C(11) \ 2.182(4)$, $Mo(2)-C(12) \ 2.297(4)$, $C(11)-C(12) \ 1.449(5)$, $C(11)-P \ 1.759(4)$; $Mo(1)-C(11)-C(12) \ 117.0(3)$, $Mo(1)-C(11)-P \ 124.4(2)$.

mononuclear Mn [6] and Fe [7] complexes also react with phosphines on the α -carbon, whereas the trinuclear complex [FeCo₂{ μ - σ , σ : η^2 -(4e)-C=CH₂)(CO)₉] reacts under kinetic control with PMe₃ at the β -carbon [8].

In the case of the trinuclear FeCo₂ system it was also reported [8] that on thermolysis the PMe₃ ligand migrated from the β -carbon on to one of the cobalt centres. In contrast, the dinuclear adducts (V–VII) were found to be thermally stable, but on UV irradiation a molybdenum to carbon double bond was re-established and the phosphorus ligand migrated on to either of the two molybdenum centres to give the purple crystalline complexes VIIIa/VIIIb [4*] (3:1) and IXa/IXb [4*] (3:1) with loss of carbon monoxide. The intramolecular nature of this reaction was indicated by the observation that irradiation of a THF solution of VII containing an excess of PMe₃ resulted in the formation of only IXa and IXb, *i.e.* the trimethylphosphite adducts.

These findings suggested that it may also be possible to carry out atom transfer reactions with dinuclear "side-on" bonded vinylidenes by treating them with suitable nucleophiles. This possibility was confirmed when it was found that both I and II reacted with cyclohexene sulphide. A sulphur atom is transferred to the α -carbon, to give the thioketene complexes X and XI [4*], which were isolated in good yield (60%) as dark-red and black crystalline materials, respectively.

Although mononuclear thioketene complexes have been synthesised previously, they were formed either directly from thioketenes carrying bulky substituents [9], or in a few cases by addition of S_8 to a rhodium-vinylidene [10]. Little is known about dinuclear systems, and in particular their reaction chemistry is unexplored. Addition of HBF₄Et₂O to either X or XI resulted in a rapid reaction at -78° C and formation of the orange crystalline μ -thioacylium cations XII and XIII [4*]. We suggest that these complexes are isostructural with the oxygen analogues $[Mo_2(\mu-MeCO)(CO)_4(\eta-C_5H_5)_2][BF_4]$ prepared by Beck and coworkers and characterised by X-ray crystallography [11]. These Mo₂ μ -thioacylium cations are potential sources of μ -thioaldehyde complexes, and this was confirmed by the regio-specific delivery of H⁻ to carbon and formation (70%) of the stable black crystalline μ -thioacetaldehyde complex XIV [4*]. In principle a range of μ -thioaldehyde and μ -thioketone complexes should be accessible by this approach. Previously such complexes have been prepared by reaction of $[W_2(\mu-S)(CO)_6(\eta-C_5H_5)_2]$ with CH₂N₂ [12] or by treatment of $[Mo_2(CO)_4(\eta-C_5H_5)_2]$ with thioketones carrying bulky substituents [13]. Obviously, our new methodology has far greater potential scope.

Acknowledgement. We thank the SERC for studentships (MB, SFTF) and the EC for support.

References and notes

- 1 (a) H. Werner, Angew. Chem., Int. Ed. Engl, 29 (1990) 1077, and references therein; (b) M.I. Bruce, Chem. Rev., 91 (1991) 197; (c) L.E. McCandlish, J. Catal., 83 (1983) 362; (d) V.C. Gibson, G. Parkin and J.E. Bercaw, Organometallics, 10 (1991) 220.
- 2 M Green, R.J. Mercer and A.G Orpen, J. Chem Soc., Chem. Commun., (1986) 567; S.F.T. Froom, M. Green, R.J. Mercer, K.R. Nagle, A.G. Orpen and S. Schwiegk, J. Chem. Soc., Chem. Commun., (1986) 1666; S.F.T. Froom, M. Green, R.J. Mercer, K.R. Nagle, A.G. Orpen and R.A. Rodrigues, J Chem Soc., Dalton Trans., (1991) 3171.
- 3 G.C. Conole, S.F.T. Froom, M. Green and M. McPartlin, J. Chem. Soc., Chem. Commun., (1989) 92.

4 Selected spectroscopic data for III: ¹H NMR (CD_2Cl_2). δ 5.12 (s, 5H, C_5H_5), 5.02 (s, 5H, C_5H_5), 3.71 [d, 1H, =CH'H, J(HH) 1.12 Hz], 1.63 (s, 9H, CMe₃), 1 42 ppm [d, 1H, =CH'H, J(HH) 1.10 Hz] ¹³C-{¹H} NMR (CD_2Cl_2): δ 252.00 (CO), 242.25 (CO), 235.47 (CO), 233 08 (CO), 122.00 (¹BuNC-CCH₂), 94.16 (C_5H_5), 92.95 (C_5H_5), 78.33 (¹BuNCCCH₂), 59.60 (*CMe₃*), 56.94 (¹BuNCCCH₂), 30.94 ppm (*CMe₃*). IR: ν (NC) (CH₂Cl₂) 2197, ν (CO) 1920 w, 1891 s, 1818 m, 1748 w cm⁻¹ Compound IV: ¹H NMR (CD₂Cl₂) δ 5.14 (s, 5H, C_5H_5), 5.12 (s, 5H, C_5H_5), 1.89 (s, 3H, =CMe'Me), 1.64 (s, 9H, CMe₃), 1.33 ppm (s, 3H, =CMe'Me). ¹³C-{¹H} NMR (CD₂Cl₂): δ 250 19 (CO), 241.96 (CO), 236.21 (CO), 233.19 (CO), 121.61 (¹BuNCCCMe₂), 95.33 (C_5H_5), 93.22 (C_5H_5), 88.59 (¹BuNCCCMe₂), 85.48 (¹BuNCCCMe₂), 59.28 (*CMe₃*), 35.56 (=CMe'Me), 31.58 (=CMe'Me), 30.96 ppm (*CMe₃*). IR: ν (NC) (CH₂Cl₂) 2153, ν (CO) 1916 w, 1886 s, 1817 m, 1798 w

cm⁻¹.

Compound V: ¹H NMR (CD₂Cl₂): δ 5.19 (s, 5H, C₅H₅), 4.95 (s, 5H, C₅H₅), 3.20 [dd, 1H, =CH'H, J(HP) 24.8, J(HH) 1.6 Hz], 1.81 [d, 9H, PMe₃, J(HP) 9.5 Hz], 1.40 ppm [dd, 1H, =CH'H, J(HP) 27.7, J(HH) 1.6 Hz], ¹³C-{¹H} NMR (CD₂Cl₂): δ 255.4 [d, CO, J(CP) 10.3 Hz], 242.2 (CO), 237.6 (CO), 234.6 [d, CO, J(CP) 1 9 Hz], 112.3 [d, C=CH₂, J(CP) 31.7 Hz], 92.6 (C₅H₅), 91.2 (C₅H₅), 55.5 [d, C=CH₂, J(CP) 9.3 Hz], 16.5 ppm (PMe₃). IR: ν (CO) (CH₂Cl₂) 1911 m, 1877 s, 1798 m, 1780 m cm⁻¹.

Compound VI: ¹H NMR (CD₂Cl₂). δ 5.08 (s, 5H, C₅H₅), 4.97 [d, 5H, C₅H₅, J(HP) 2.02 Hz], 2.34 [d, 3H, =CMe'Me, J(HP) 2.38 Hz], 1.63 ppm [d, 9H, PMe₃, J(HP) 9.65 Hz]. ¹³C-{¹H} NMR (CD₂Cl₂): δ 259 60 [d, CO, J(CP) 24.62 Hz], 246.81 (CO), 244 35 (CO), 230.80 [d, CO, J(CP) 7.0 Hz], 229.64 [d, C=CMe₂, J(CP) 36.8 Hz], 152.10 [d, C=CMe₂, J(CP) 3.35 Hz], 94 28 (C₅H₅), 93 50 (C₅H₅), 31.25 (=CMe'Me), 31.12 (=CMe'Me), 17.55 ppm [d, PMe₃, J(CP) 32.8 Hz]. IR: ν (CO) (CH₂Cl₂) 1911 m, 1883 s, 1834 m, 1756 w cm⁻¹.

Compound VII: ¹H NMR (CD₂Cl₂), δ 5.15 (s, 5H, C₅H₅), 5.07 [d, 5H, C₅H₅, *J*(HP) 1 71 Hz], 3.79 [d, 9H, P(OMe)₃, *J*(HP) 11.3 Hz], 2.34 [d, 3H, =CMe'Me, *J*(HP) 2.34 Hz], 2.33 ppm [d, 3H, =CMe'Me, *J*(HP) 2.55 Hz]. ¹³C-[¹H] NMR (CD₂Cl₂): δ 252.50 [d, CO, *J*(CP) 31.8 Hz], 246.21 (CO), 244.26 (CO), 231 10 [d, CO, *J*(CP) 6.9 Hz], 225.47 [d, *C*=CMe₂, *J*(CP) 50.61 Hz], 152.96 [d, d)

C=CMe₂, J(CP) 3.94 Hz], 94.54 (C₅H₅), 93.55 (C₅H₅), 53.95 [d, P(OMe)₃, J(CP) 27.15 Hz], 31.02 ppm (=CMe₂). IR: ν (CO) (CH₂Cl₂) 1893 br, 1827 m, 1785 w cm⁻¹.

Compound VIIIa: ¹H NMR (CD₂Cl₂): δ 5.44 [d, 5H, C₅H₅, *J*(HP) 1.77 Hz], 5.05 (s, 5H, C₅H₅), 1.68 (s, 3H, =CMe'Me), 1.63 (s, 3H, =CMe'Me), 1.59 ppm [d, 9H, PMe₃, *J*(HP) 9.06 Hz]. ¹³C-{¹H} NMR (CD₂Cl₂). δ 298.72 [d, Mo=C, *J*(CP) 34.16 Hz], 249.06 (CO), 248.69 [d, CO, *J*(CP) 15.42 Hz], 236.74 [d, CO, *J*(CP) 4.67 Hz], 95.47 (C₅H₅), 92.93 (C₅H₅), 68.04 (C=CMe₂), 31.02 ppm [d, =CMe'Me, *J*(CP) 30.68 Hz].

Compound VIIIb: ¹H NMR (CD₂Cl₂): δ 5.40 [d, 5H, C₅H₅, *J*(HP) 1.94 Hz], 5.26 (s, 5H, C₅H₅), 1 67 (s, 3H, =CMe¹Me²), 1.62 (s, 3H, =CMe¹Me²), 1.58 ppm [d, 9H, PMe₃, *J*(HP) 9.10 Hz]. ¹³C-{¹H} NMR (CD₂Cl₂): δ 305.10 [d, Mo=C, *J*(CP) 24.2 Hz], 246.75 (CO), 246.70 (CO), 236.26 (CO), 94.02 (C₅H₅), 93.20 (C₅H₅), 30.88 [d, =CMe¹Me², *J*(CP) 2.27 Hz], 30.24 (s, =CMe¹Me²), 25.83 ppm [d, PMe₃, *J*(CP) 30.92 Hz].

Compound IXa: ¹H NMR (CD₂Cl₂): δ 5.50 [d, 5H, C₅H₅, *J*(HP) 1.53 Hz], 5.09 (s, 5H, C₅H₅), 3.59 [d, 9H, P(OMe)₃, *J*(HP) 11.77 Hz], 1.64 [d, 3H, =CMe¹Me², *J*(HP) 1.88 Hz], 1.50 ppm [d, 3H, =CMe¹Me², *J*(HP) 1.85 Hz]. ¹³C-{¹H} NMR (CD₂Cl₂). δ 300.03 [d, Mo=*C*, *J*(CP) 48.7 Hz], 246.79 (CO), 241.56 [d, CO, *J*(CP) 21.95 Hz], 235.35 [d, CO, *J*(CP) 4.98 Hz], 94 03 (C₅H₅), 91.57 (C₅H₅), 67.25 [d, C=CMe₂, *J*(CP) 3.44 Hz], 52.3 [d, P(OMe)₃, *J*(CP) 2.28 Hz], 28.72 (=CMe¹Me²), 28.43 ppm (=CMe¹Me²).

Compound IXb: ¹H NMR (CD₂Cl₂): δ 5.37 [d, 5H, C₅H₅, *J*(HP) 1.39 Hz], 5.26 (s, 5H, C₅H₅), 3.57 [d, 9H, P(OMe)₃, *J*(HP) 12.02 Hz], 1 61 [d, 3H, =CMe¹Me², *J*(HP) 0.80 Hz], 1.52 ppm [d, 3H, =CMe¹Me², *J*(HP) 0.73 Hz]. ¹³C-[¹H] NMR (CD₂Cl₂): δ 310.80 [d, Mo=C, *J*(CP) 38.11 Hz], 246.42 (CO), 238.52 [d, CO, *J*(CP) 21.61 Hz], 232 72 (CO), 93.96 (C₅H₅), 92.08 (C₅H₅), 69.57 (C=CMe₂), 51 90 [P(OMe)₃], 28.82 (=CMe¹Me²), 28.40 ppm (=CMe¹Me²).

Compound X: ¹H NMR (CDCl₃), δ 5.82 [d, 1H, =CH¹H², *J*(HH) 2.5 Hz], 5.48 (s, 5H, C₅H₅), 5.20 [d, 1H, =CH¹H², *J*(HH) 2.5 Hz], 5.01 ppm (s, 5H, C₅H₅). ¹³C-{¹H} NMR (CDCl₃): δ 245 7 (CO), 237.4 (CO), 235.4 (CO), 235.1 (CO), 185.6 (SC=CH₂), 107.7 (C=CH₂), 94.1 (C₅H₅), 94.0 ppm (C₅H₅). IR: ν (CO) (hexane) 1969 w, 1946 s, 1881 m, 1837 w cm⁻¹

Compound XI: ¹H NMR (CDCl₃): δ 5.43 (s, 5H, C₅H₅), 5.04 (s, 5H, C₅H₅), 2.28 (s, 3H, =CMe¹Me²), 1.86 ppm (s, 3H, =CMe¹Me²). ¹³C-{¹H} NMR (CD₂Cl₂): δ 246 3 (CO), 237.8 (CO), 232.1 (CO), 171.5 (C=CMe₂), 131.3 (C=CMe₂), 93.7 (C₅H₅), 93.1 (C₅H₅), 31.6 (=CMe¹Me²), 22.1 ppm (=CMe¹Me²).

Compound XII: ¹H NMR (CDCl₃): δ 5.73 (s, 10H, C₅H₅), 3.05 ppm (s, 3H, Me). ¹³C-{¹H} NMR (CDCl₃): δ 222 8 (CO), 222 0 (CO), 120.8 (SCMe), 96.0 (C₅H₅), 33.1 ppm (Me). IR ν (CO) (CH₂Cl₂) 2061 m, 2012 s, 1919 m cm⁻¹.

Compound XIII: ¹H NMR (acetone- d_6): δ 6.00 (s, 10H, C₅H₅), 3.48 [heptet, 1H, CH, J(HH) 6.7 Hz], 1.39 ppm [d, 6H, Me, J(HH) 6.7 Hz]. ¹³C-{¹H} NMR (acetone- d_6): δ 220.0 (CO), 221.5 (CO), 135 5 (SC'Pr), 94 9 (C₅H₅), 43.6 (CH), 26.6 ppm (Me). IR: ν (CO) (CH₂Cl₂) 2061 m, 2009 s, 1917 m cm⁻¹.

Compound XIV: ¹H NMR (CDCl₃): δ 5.43 (s, 5H, C₅H₅), 5.10 (s, 5H, C₅H₅), 1.92 [q, 1H, CHMe, J(HH) 3.0 Hz], 1.84 ppm [d, 3H, Me, J(HH) 3.0 Hz]. ¹³C-(¹H) NMR (CDCl₃): δ 245.7 (CO), 235.9 (CO), 235.4 (CO), 230.7 (CO), 93.6 (C₅H₅), 92.6 (C₅H₅), 81.1 [CH(Me)], 31.4 ppm (Me). IR: ν (CO) (hexane) 1958 w, 1931 s, 1877 m, 1831 w cm⁻¹.

5 Crystal data for IV C₂₃H₂₅Mo₂NO₄, M = 571.34, monoclinic, space group $P2_1/n$, a = 8 140(1), b = 13.148(1), c = 21.158(4) Å, $\beta = 96.03(1)^\circ$, U = 2251.9 Å³, Z = 4, $D_c = 1.69$ g cm⁻³, μ (Mo- K_{α}) = 11.1 cm⁻¹, T = 293 K

V: $C_{19}H_{21}Mo_2O_4P$, M = 536.23, monoclinic, space group $P2_1/n$, a = 8.316(2), b = 15.522(2), c = 15 719(4) Å, $\beta = 97.23(1)^\circ$, U = 2012.9 Å³, Z = 4, $D_c = 1.77$ g cm⁻³, μ (Mo- K_{α}) = 13.2 cm⁻¹.

In both cases the positions of the hydrogen atoms were calculated according to ideal geometry (C-H distance 0.95 Å) and refined as riding atoms, otherwise all atoms were directly located and refined. Final residues R were 0.026 ($R_w = 0.032$) and 0.027 ($R_w = 0.030$) for 3217 and 2992 unique, observed [$F_o > 3\sigma(F_o)$] intensity data respectively.

- 6 H. Berke, Z. Naturforsch, Teil B, 35 (1980) 86; N.E. Kolobova, L.L. Ivanov, O.S. Zhvanko, V.F. Sizio and Y.S. Nekrasov, Izv. Akad. Nauk. SSSR., Ser. Khim., 27 (1979) 93.
- 7 B.E. Boland-Lussier, M.R Churchill, R.P. Hughes and A.L. Rheingold, Organometallics, 1 (1982) 628.
- 8 T. Albiez and H. Varenkamp, Angew. Chem., Int. Ed. Engl., 26 (1987) 572.
- 9 R Drews, F. Edelmann and U. Behrens, J. Organomet Chem., 315 (1986) 369.

- J. Wolf, R. Zolk, U. Schubert and H. Werner, J. Organomet. Chem., 340 (1988) 161; H. Werner and U. Brekau, Z. Naturforsch., Teil B, 44 (1989) 1438; H. Werner, T. Rappert and J. Wolf, Isr. J. Chem., 30 (1990) 377.
- 11 K. Sunkel, K. Schloter, W. Beck, K. Ackermann and U Schubert, J. Organomet. Chem., 241 (1983) 333.
- 12 M. Herberhold, personal communication, 1988.
- 13 H. Alper, N.D. Sılavwe, G.I. Birnbaum and F.R. Ahmed, J. Am. Chem. Soc., 101 (1979) 6582.